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ABSTRACT

We present a model to treat fully compressible, nonlocal, time-dependent turbulent convection in the
presence of large-scale flows and arbitrary density stratification. The problem is of interest, for example,
in stellar pulsation problems, especially since accurate helioseismological data are now available, as well
as in accretion disks. Owing to the difficulties in formulating an analytical model, it is not surprising that
most of the work has gone into numerical simulations. At present, there are three analytical models: one
by the author, which leads to a rather complicated set of equations; one by Yoshizawa; and one by
Xiong. The latter two use a Reynolds stress model together with phenomenological relations with adjust-
able parameters whose determination on the basis of terrestrial flows does not guarantee that they may
be extrapolated to astrophysical flows. Moreover, all third-order moments representing nonlocality are
taken to be of the down gradient form (which in the case of the planetary boundary layer yields incor-
rect results). In addition, correlations among pressure, temperature, and velocities are often neglected or
treated as in the incompressible case.

To avoid phenomenological relations, we derive the full set of dynamic, time-dependent, nonlocal
equations to describe all mean variables, second- and third-order moments. Closures are carried out at
the fourth order following standard procedures in turbulence modeling. The equations are collected in an
Appendix.

Some of the novelties of the treatment are (1) new flux conservation law that includes the large-scale
flow, (2) increase of the rate of dissipation of turbulent kinetic energy owing to compressibility and thus
(3) a smaller overshooting, and (4) a new source of mean temperature due to compressibility; moreover,
contrary to some phenomenological suggestions, the adiabatic temperature gradient depends only on the
thermal pressure, while in the equation for the large-scale flow, the physical pressure is the sum of
thermal plus turbulent pressure.

Subject headings: hydrodynamics — turbulence

1. INTRODUCTION

In this paper, we deal with a fully compressible flow described by velocity and temperature fields u; and 7T, which we take as

w=+u,, T=T+T". (1a)
The density p and pressure p, related by a perfect gas equation of state
p=RpT, (1b)
are split as
p=p+p, p=p+p. (10)

Here, an overbar and/or angle brackets denote ensemble average. We include body forces (e.g., gravity) and a radiative field
whose form will be left unspecified. As explained in § 2, we use the mass average process to treat the fields # and T. We derive
the following results:

First-order moments :

1. Dynamical equation for the mean density p in terms of the large-scale velocity field .

2. Dynamical equation for the large-scale flow &. This entails a second-order moment representing the flux of the turbulent
velocity field, the Reynolds stresses R;;. _

3. Dynamical equation for the mean temperature field, T. This entails a second-order moment representing the flux of the
fluctuating temperature field, the enthalpy, or convective flux, H;.

Second-order moments:

"o

1. Dynamical equation for the Reynolds stresses, R;; = p~ " pu; .
2. Dynamical equation for the enthalpy/convective flux, H, = p~'c, pu; T".
3. Dynamical equation for the temperature variance, ¥ = 3p~ 'pT"2

Third-order moments:

The equations for R;;, H;, and ¥ entail third-order moments of the type

j°

1oy gy

R;j =l_’_1pui u; ug , Hijzi)_lu;/u}, T, \Pizl_)_llm;f T, (1d)
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which are known as diffusion terms since they appear as divergences, and

op’ op' op’

O=u —+u —, =T =, (le)
Yoo ox Y ox ' 0x;

which represent pressure correlations. Rather than using phenomenological expressions or assuming their incompressible

counterparts, we derive the dynamic, time-dependent equations for equations (1d) and (1e). The latter, in turn, entail higher

order moments

’

"o ap

op’ op’
O, =u/v —, N=uT —, MN%=p>_—=, (1)
ijk i %) axk ij i axj i P axi
for which we also derive the corresponding dynamic, time-dependent equations.
In addition, compressibility acts as a source of dissipation €, which is now the sum of a solenoidal (incompressible) and a

dillation (compressible) part, €, and €,, which must be modeled. In addition, we work out the expression for the new variables

Yy = — — , Dp Dp
/.l, TN’ / I'/, Id’ u/./ _’ TI/ 1 R (lg)
u; pui, pd, Ui 1o Dt
which enter in several of the dynamic equations. The complete set of equations contains only one assumption, that p’, p’, and
pT" satisfy a polytropic relation.
In the Appendix, we summarize all the relevant equations.

2. REYNOLDS AND MASS AVERAGES

As in previous work (Lele 1994; Favre 1969; Canuto 1992, 1993, 1994, 1996; Rubesin 1989, 1990; Sarkar & Balakrishnan
1990; Taulbee & VanOsdol 1991; Speziale & Sarkar 1991; Sarkar 1992; Sarkar et al. 1989, 1993), pressure and density are
written as

p=p+p, p=p+yp, (2a)
with the general rule that a stochastic variable ¢
E=E+¢ (20)
satisfies the following relations
=<K, <(H=t=o0. (20

In the case of compressible turbulence, it is more appropriate to treat the other variables via a “mass average” process,
whereby

(=84, (32)
where
z p&>
= == ™S =0. 3b
¢=1{¢ 0> <pe"> (3b)

Thus, an overbar and/or angle brackets represent a Reynolds average, while a tilde and/or curly brackets represent a mass
average. We stress that in either case we are dealing with statistical averages (time averages if one adopts the ergodic
hypothesis), in contrast to the volume averages that are used in numerical approaches such as LES, large eddy simulation. As
we have said, the velocity and temperature fields are written as

u;, =4; +ul, T=T+T". (3¢)

With the above definitions, we derive the following relations:

p AP
&= - RO (3d)
P& =<p'd>, (3e)
&) =< — see) & —{g=<-¢ (3f)
<P
It is important to stress that
&">#0, (&>=0. (g

Using an equation of state of the form (R = 1)
p=p T > (43.)
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we derive
. — _pT .
o= 7, (4b)
p
p=pT+pT". (4c)
With the Reynolds averageandp = p + p/, T = T + T', we have
p=pT+pT, (4d)
P=pT+pT —pT, (4e)
which are considerably less intuitive than equations (4b) and (4c). Applying the above rules, we derive the following relations:
Guy=pif =0, @=L (s9)
<p>
L) Lpuy
uly = = , 5b
O ) 0
— ~ T
GTy=pT =0, T=LT2, (59)
<p>
WTY _ T
T = — = — . 5d
To=="% T T w 9
For example, from equations (3f) with £ = T and (3d), (5d), or from (4b) and (4d), it follows that
~ T -
F=T+2" T (1, (5¢)

and thus one may expect that the two types of averages coincide in the incompressible case. Equation (37b) for T” confirms
that expectation. With these premises, we shall consider several basic equations.

3. CONTINUITY EQUATION

Given the general equation governing the density p

dp 0 op _ 0 0
PR I APl S (6a)
we obtain, upon averaging,
op 0 _.
ot T ax, P =0 (6b)
or alternatively
D_ _ 0 . D o0 . 0
D’ paxju_o’ Dt ot o, (60)

In the stationary case, equation (6b) expresses conservation of the mass flux pii;. Subtracting equation (6¢) from equation (6a),
one derives the equation for p’:

D 0 0 "
Dtp + 0 o, Ej(pu,-)—O, (6d)
which can be further transformed into a equation for p'/p:
Dp 0 n
thp+axi(pi)—0- (6¢)

As expected, taking averages of equation (6¢) and making use of equation (2c) and the first of equation (5a), we obtain an
identity.

4. MOMENTUM EQUATIONS

Consider the Navier-Stokes equations

a 0
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' 0x;

where g;; is the viscous stress tensor defined by

i . 0
p_pgi+F‘iHS’ F;IISEEGU: (7b,C)
Jj

0 0 2 0
O-U='u<a_xj ul+a_xluj>_§'u&ua_xkuk (7d)

Here, u = vp is the dynamic viscosity. Substituting equation (3c) for u; and equation (2a) for p, averaging and using the above
relations, we derive the following results.

5. LARGE-SCALE VELOCITY FIELD #: DYNAMIC EQUATIONS

Averaging equation (7a), we obtain the dynamic equation for the large-scale flow #,

(pul) + - 6 (pu u + Tl]) - (Sa)
or
_D . _ 0

j

In equations (8a) and (8b) ;; are the turbulent Reynolds stresses

= uf uj = pluf uj} (89)
Since the field # represents the large-scale flow, it is Justlﬁed to assume that it is not affected by viscosity, and so
Fi=—<5—g:. (89
0x;
Thus, finally,
ﬁ%ai= _£(I_’5ij+fij)_pgi (8e)

j
6. LARGE-SCALE VELOCITY FIELD #: STRESSES
For the large-scale velocity field #, the Reynolds stress tensor can be defined as
;4 . 9a)

Multiplying equation (8b) for #; by ii; and repeating the operation with i and j interchanged, we obtain, upon summing the two
equations,

t;;

ij

= _(ﬁifjk,k‘i‘ajfik’k)+Fiﬁj+Fjai. (9b)

As expected, the space derivatives of the turbulent stresses t;; act as a source of ;; much as the space derivatives of the
large-scale flow (shear) act as a source of 7;;. Using equation (8d), we further have

= = 0
Fiaj + Fjai <ap + pgk)(uléjk + u 51k) (9C)
X

To solve equations (8a) and/or (9b), one needs to know the turbulent Reynolds stress ;;. Equation (9b) will be used in § 13 to
derive the generalized Bernoulli’s equation. However, we must note that the field & is obtained through the solution of
equation (8e).
7. TURBULENT VELOCITY FIELD
Consider equation (7a) written in the equivalent form,

0 0 _

aui+uj5ui=p F,. (10a)
Substitute u; from equation (3¢) and subtract equation (8b). The result is the equation for u; :

D _
Dtu +uji;+ujul ;= p 'F,— () 'Fi + (p) 'ty (10b)
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which can be compared with the equation for the incompressible case, equation (31) of Canuto (1992). In writing equation
(10b), we have employed the notation

a ;= 0alox;; a; ; = 0a;/0x; ; a;j = 0a;;/0xy, . (10c)

///

As a consistency check, one can work out the equation for the vector g; = p'ui. Multiply equation (10b) by p’ and equation
(6d) by u;. Adding the results and averaging, one obtains

%ql+qiﬁj,j+qjﬁi,j+ri“ pu”u” p—,F,-. (10d)
The fifth term can be evaluated by averaging equation (10b). Substituting into equation (10d), one obtains
D i+ i+ i+ P+ P =0, (10¢)
which can be rewritten as
D = T s
E (q; + pui) + (‘1,’ + Pu}')ui,j +(q; + Pu:',)“j,j =0, (10f)
where we have eliminated Dp/Dt via the first of equation (6¢). Since
q; + puj = pu; (10g)

is zero in the mass average process, equation (5a), equation (10f) is identically satisfied.

8. TURBULENT FIELD: REYNOLDS STRESSES

To derive the dynamic equation for the Reynolds stresses (eq. [8c]), we multiply equation (7a) for u; by u; and multiply
equation (7a) for u; by u;. Adding the two equations, we obtain

(pu,u]) + (pu i) = Fu; + Fju; . (11a)
Averaging and making use of the relations
pu;u; = pii;ii; + 7,5, (11b)
pu;u; e = pit; ity + Ty U + Ty bl + Tyl A+ T (11¢)
as well as of equation (9b), we derive the des1red dynamic equation for 7;;, namely,
D _
Dt7:”+Df S;; +Fu—Fu + Fju; — F;i; . (11d)
Here, D ; denotes the diffusion of 7;:
g — T -
D, = 6_xk Tiji » Tije = pui ujuy = pRyj . (11e)

The tensor S;; denotes the source of 7;; due to the field #, that is,
= 84 = Tl + Tl + Tl (11f)

while the last four terms in equation (11d) comprise pressure distribution, density-velocity correlations, and dissipation terms,
which we consider next.

9. PRESSURE AND GRAVITY FORCES
Using equations (7b) and (7c), we derive
S ~ "W
Fiuj + Fjui = - (Pk + ng)(uifsjk + ujéik) (51ku + 6]ku )Pk 6

a /
ur L ) ¢ P+ P, (122)

Since the first term is just equation (9¢), we finally have
Fiu; + Fu; — (Fidi; + F;d;) = By — I; + X, (12b)

where we have defined the three tensors

(p/ uj 8y + PUY 3P i (12¢)
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Hl] = u”p, + u”p,l = Aij + Aji > (12d)
X;; = FIY‘suj + F}isui . (12¢)

In writing B;;, we have used equation (5b).

ij>
10. VISCOUS TERMS

First, we compute the tensor X;;in equation (12e). Us1ng equation (7c), we first write

Xy = o @l + T — (13a)
Xk

where the “dissipation tensor ” ¢;; is defined by

€ij = Oy Ujx + Ojp Uy - (13b)

ij
The “diffusive ” component of X;; will be included in the diffusion term D;; (see below), while the “ dissipative ” component ¢;;
will be discussed in § 14.
11. REYNOLDS STRESSES
Putting together equations (12b), (13a), and (13b), equation (11d) becomes

D
We have redefined the Reynolds stresses, diffusion tensor, source term, and pressure-velocity correlation as follows:
R;=p 'v;=p" Lou u) uj, (14b)
_ 0| e S —
D;j=p 6_xk PRij + 3 0i;p'uy — Oyut; — oy | (14¢)
Rijk = F_’_l Tig =P PuN i u;c, > (144d)
— Xy = pLRytj i + Ryt ] (14e)
m; = I0; — 30,10, . (14f)
The pressure-dilatation term PD is defined as
PD =3pu,=3pd, (14g)
where d is the “ dilatation ” defined as
d= 9 ul = uy (14h)
- ax i — Yijio

while B;; and IT;; are still given by equations (12c) and (12d). The physical interpretation of equation (14a) is as follows: X;;
represents a source term due to the shear of the large-scale flow #, B;; represents a source due to mass fluctuations (see the
interpretation as a buoyancy term in the next section), IT;; represents the contribution of pressure gradlents while the last two
terms represent dilation effects and viscous dissipation. The expressions for B;;, PD, and ¢;; will be given in § 14, IT;; will be
discussed in § 15, while the nonlocal, third-order diffusion term will be discussed in § 16.

12. TURBULENT KINETIC ENERGY AND TURBULENT PRESSURE

To help understand the physical content of equation (14a), consider the equation for the turbulent kinetic energy K :

=1ip” pu” u (15a)
Taking the trace of equation (14a), we obtain
‘2K+D(K) —12 +lB +pd—p (15b)
th =5 &i T 5 B p PE ,
where D(K) is the diffusion of kinetic energy
__, 0|1
D(K) =p ax. 2 kakl + p u - at] uj (150)
and
1 1 aﬁ
- / " 1
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Here, € is the rate of dissipation of kinetic energy (see eq. [27a]),

€;=3ped;; . (15¢)
From equation (8c) with i = 3, u3 = w, we define a turbulent pressure
p=pw, P=pp,. (16a)
From equation (14a) we have
| D 2
p|:D_t P, + D(Pt):| =233+ By; — w33 + 3 (p'd — pe) (16b)
with
_ 0 |. 2— _
pD(P,) = 6_x, [PRssi + 3 pui —2 0'3i“3:| . (16¢c)
We note, as a matter of illustration, that if we adopt the Boussinesq approximation (Canuto 1992)
o ~—apT", oa~T ', pul~—apu/T", (16d)
and the hydrostatic equilibrium equation
2 —ap. (16¢)
equation (15d) becomes
Bu= () 0% L~ apg i T ~ acy g, F (166)
27" 0x; P

where F{ is the convective flux; see equation (17b). Apart from notational difference, this is the source of turbulent kinetic
energy, equation (60) of Canuto (1992).
Finally, we note that two new dissipation terms appear in equation (14a) that are absent in the incompressible case, that is,

pd, pe, (16g)
since, as we shall discuss in § 14,
€ = €5(incompressible) + €,(compressible) . (16h)
It has been estimated from DNS data that the additional sources of dissipation (eq. [16g]) due entirely to compressibility can
modify the kinetic energy budget by as much as 25%.
13. TEMPERATURE FIELD

Next, we consider the temperature field

T=T+T", pT=pT, pT"=0, (17a)
and derive the dynamic equations for the mean temperature 7T, the temperature flux
Fi=c,pT'w{, H;=p 'F;, (17b)
and the temperature variance (which is related to the potential energy)
V=5T?, ¥=p'y. (17¢)

13.1. Mean Temperature
We begin with the dynamic equation for total energy
h+ 3u?, (18a)

where h = ¢, T + p/p is the enthalpy and 1u? = }u,u; is the kinetic energy (per unit mass) where  is the velocity field. We
have

d 1 op 0 0
—\h+Zu?)==+—(0;;u) — pg;u; — — F" 18b
P ( +ou > 5 o, (0i;uw) — pgiw; ox oo (18b)
where F’ represents a radiative flux of arbitrary form. Since from Navier-Stokes equations (7a), we have
d1l , op 0
= —yu 2ty — 0.. — pg: U 18
Par2® i 0x; T 0x; Tu T P (159
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we subtract equation (18c) from equation (18b) to obtain the equation for the enthalpy

dp 0 o .,
ph + a (phu) dt + Oij a U — axi Fi H (18(1)
where we have used the fact that
dh oh Oh 0 0
—=p| — i — | == ph+ — (phu)) . 18
Pt ”(at T axj> ot Pt 5, o) (18¢)
Next, we average equation (18d). For a perfect gas,h = ¢, T + pp~' = ¢, T, we obtain
ph=c,pT, (192)
phu = cp(pTu + ph’ N =c pTu + F5, (19b)
dp _Dp —3dp 0 19¢
d Dt Mok T ox (15¢)
and from equations (13b) and (15e),
O;U;; = pE . (19d)
The dynamic equation for the mean temperature 7 is then
- DT 0 c r r 1% Dp "= -3 -
pcht__6x~(Fi+Fi_ )+D+u pi—pd+pe. (20a)

Because of equation (5b), the third term in equation (20a) can be written in terms of the tensor B;; of equation (12c) as

— 0p — 0p 1
’-’—=—— "uf = ——-B,;. 20b
ul axi /_) p ul axl 2 12 ( )
It is important to stress that in equation (20a), € acts as a source of temperature while it acts as a sink for the turbulent
kinetic energy (eq. [15b]). Because of equation (16h), compressibility acts as a source of mean temperature. Also, the pressure-
dilation effects act in opposite ways in the kinetic energy equation (15b) and in the enthalpy equation (20a). The expressions
for the terms u}, €, and p'd will be given in §§ 14 and 15.

13.2. Generalized Bernoulli Equation
In this section, we limit our considerations to an inviscid fluid. Adding equation (20a) to (15b) yields

Dp _ _D ~ 0 _
— = pR;;1; —[c, T + K] + — (F¢ + F: + F** 20
D; =P +pp Lo, T+ ]+axi(l+ i+ F), (20¢)
where F¥° is the flux of turbulent kinetic energy
F¥e = Spujuju] . (20d)
Next, we add to both sides of equation (20c) the term
D1 DK
~Db1l..__DK 2
P Do lithi=p s (20e)

where K is the kinetic energy of the large-scale flow #. Using the trace of equation (9b), equation (20c) becomes

Dp _
p—[c T+K+K]+6—(F“+F'+er+pRUuJ) IZ + F;a (20f)
Next, we use the form of F;, equation (8d), and recall that
0G _ DG
pil; — =p —, 20
9 pik; = pii; o~ P D (20g)
since as a rule the gravitational field G does not depend on time. Thus, equation (20f) becomes
e
a—lt’—‘—(cT+K+K+G)+6—(F“+F’ FX 4 pRii) . (20h)

Equation (20h) is the generalized Bernoulli’s equation to include turbulence and radiation.
13.3. New Flux Conservation Law
In the stationary case, equation (20h) yields the conservation law

F{ + Fi + F* + piif(c, T + K + K + G)§;; + R;;] = constant . (20i)
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What is conserved is the sum of the convective, radiative, turbulent kinetic energy fluxes plus the flux by the large-scale flow of
enthalpy, kinetic energy of both turbulence and large-scale flow, gravitational energy, and Reynolds stresses. In stellar
structure studies, equation (20i) is usually written as

F¢ + F; = constant , (205)

or, at most, with the inclusion of F*¢, It is, however, clear that in pulsation problems, the last terms proportional to # cannot
be neglected ; we recall that # contains not only a time-independent part but also large-scale oscillations, sound waves.

13.4. Convective (Enthalpy) Flux, F{ = c,pu; T" = pH,
To construct the dynamic equation governing the convective flux (eq. [17b]), we begin with equation (18d) written as

0 dp
T +— T —+ X 21
[at” +3 (pu )] 7 (21a)
with
X=o,u,;,—F;,. (21b)
Use of the continuity equation (6a) and p = RpT, as well as equation (21a) to eliminate the time dependence of T, gives
dp ou;
— =9yl X — ] —X 21
o v< P ax) ) (219
which can be considered the dynamic equation for the pressure p. The temperature equation (21a) can thus be written as
0
2 PT+oc (pu T)=(4, B, (21d)
where (4, B) means that one can use either 4 or B, where
dp ou;
A=c;! X B=c Yl —-p—+X]. 21
alirx] peofes] a9

Multiplying equation (21d) by u; and equation (7a) by T and summing, we obtain

(pTu) +— 6 (pu ;T)=F; T + u(A, B) . (22a)

Next, we average equation (22a) and employ the results
pTu, = pii, T+ pu! T" = pit; T + ¢, 'F¢ , (22b)
pu;u T pUl; Ui T+ T‘L’-- + ¢, M0y F§ + 6, F) + pu” T, (22¢)

where 7;; is the Reynolds stress, equation (8c). Substitute equations (22b) and (22c) into the averaged form of equation (22a)
and make use of equation (8a). The result is

~

D oT

Di F{ + pD; = T 6 -+ C{#@) + c,[F; T — TF; + u{4, B)] . (232)

Here, C (i) the contribution of the large-scale field z:

. DT o _.

— Ci@) = F{i; ; + F, ; +u<CPDt+6_ijj>’ (23b)

and D, represents the diffusion of the convective flux,

0
pD;=c, —— hy;, h; = pui u] T u; T" = pH;;, (230)

0x;

a third-order moment whose form will be given in § 16. Next, we work out the last three terms in equation (23a). Recalling
that (p) ; = 0, we obtain

FT-TF=-T2 72 a0+ TR, (23d)
0x; 0x;
where
1 0p P op
A=H,-— H,=— =7 _—. 23e
o Phox’ " gp’ ‘ 0x; 239
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H, is the pressure scale height, and I} is the pressure-temperature correlation. The expression for (T") is given below,
equation (37b). Using the definition of 4, equation (21e), we derive

/ / / /

S 0 0 0 0
cyu; A= (l; + u”)p  +uy 617 + [i@; + u”) + i; u + rip.; + uj ap + @ uf 617 wF; — u”F’ + uj uf ap +u oy,
(23f)
where
ry=u/u]=R;—mT 'H,;. (23g)
Using the definition of Cy(#) and equation (20a), equation (23a) then becomes
D 0 _ oy~ _ m \_ — A T
|:Dt H;+c, 8 :| =c,pR;;B; — pH;t; ; — cl,H,-jI:p!j + <c T>p’j:| — ¢ [gpA; T" + ]
p
" Dp n Dp/ /I r
+TCUk5]k+u E‘l‘u E_u FJ]’ (24a)
where the higher order tensor
" " ap/
i = w0 (24b)
will be given below, § 16, equations (51g) and (51h). The superadiabatic temperature gradient is defined as
oT oT
B = P Bi= — s+ A (240)
0x; 0x;

P

As one can see, the pressure that enters the definition of § is not the total pressure, p(thermal) + p(tur), as has often been
suggested on phenomenological grounds. Such renormalization occurs only in equation (8¢), which, in the absence of a
large-scale flow, becomes the hydrostatic equilibrium equation.

As for the viscous terms, the quantity pe brought about through equation (20a) cancels exactly, leaving the terms u} o, u; ;
and T"F}*, which we con51der smaller than the last term in equation (24a) which represents the rate of dissipation of H Both
the gradlerLt of the mean temperature and the gradient of the large-scale flow (shear) act as sources of H;. The expression for
T, T"p';, u, u} Dp'/Dt will be given in §§ 14 and 15. The radiation term must be treated in accordance with the chosen model
for FI. It is, however, important to stress the role of compressibility. Regardless of the model chosen, we can write

F,=F +F/ (24d)

and thus
u/ F ;= 5 + u[ F7);. (24¢)
The first term is zero in an incompressible treatment, while the second term is nonzero in both treatments since physically it

represents the damping of the convective flux owing to radiative processes. If one employs a representation of the type
(x = ¢, pK,, where K, is the radiative conductivity)

oT
Fr=— , 24f
, % 5, (24f)
one can write
1 0
u; F;”J = 5 FFC (24g)
which becomes important when the radiative timescale
T, ~ Pyt (24h)

becomes of the same order as or shorter than the buoyancy timescale. The term (24g) becomes important for small Peclet
numbers, that is, when convection is inefficient.

13.5. Temperature Variance y = $pT"? = p¥
Using equations (21d) and (7a), the equation for pT? is

0
o pT? + — (pT2 u;) =2T(4, B) . (25a)
Averaging and using the fact that

pT? =pT> +pT"7, (25b)
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oT?u; u; = pii; T2 + ii; pT"? + pu; T"? + 2Tc‘1F” (25¢)
we obtain the equation for
D N _caT_~_DTaci
El//"_Df: —ui,il// lFla Cp 1T<cppﬁ+axl Fl)"l'T(A, B), (26a)
where the diffusion D is defined as
p,=12y Y= pui T = p¥ (26b)
f_26xi i i = PY; =pr;
Using the first of equations (21¢) and (20a), equation (26a) becomes
D ~ _ - ik sl Dl_) " Dp/ i T 260
cp<Dtl//+Df+ui!ilp>— pPH, T, + T Dt+T Dr +uT'p,— T'F;;, (26¢)
since
1
W Tp, = u'Tips+u T'p; = <C )pA Hi+ 0, (26d)
p
where

o o
0 — Va4 ot ZE
nij_<T uf 22 > <T o > (260)

is a pressure-velocity-temperature correlation that will be studied in § 16. Using the second of equation (26b), we finally obtain
Dp Dp’
A et &

—T"F" . . 26f
Dt Dt bt 260

_(D¥Y 1

As expected on physical grounds, the large-scale flow # does not act directly as source of temperature variance while the
temperature gradient does.
14. CLOSURES

14.1. Compressible Dissipation: Two Models

Since dissipation by molecular forces occurs at the smallest scales that are nearly isotropic, it has been a standard
approximation to assume that ¢;; is of the form,

€= 3pedy (7a)
Using equation (13b), we obtain
pe = 0;u; ; (27b)
Using the definition of o,;, equation (7d), one obtains after several steps, the following exact result:
pe = u[w” o] + = d2:| +2u 66 [ai uj uj — 2d_u;’:| , (27¢)
where the vorticity o = €;; @}, 20]; = u] ; — uj ;, €;; being the Levi-Civita tensor. At this point, it is usually assumed that

owing to the homogeneity of the small scales the last two terms can be neglected in comparison with the first two terms.
However, this is not a required approximation, since one can think of including the last two terms in the diffusion term. The
important fact is that, contrary to the incompressible case, the dissipation € is now contributed by two terms, a solenoidal
(incompressible) and a dilation (compressible) component (Sarkar et al. 1989 ; Zeman 1990, 1991):

e=e +¢€, €=volol, €=32%vd*>. (27d)
We present two models:

1. In this model, € is treated as a single variable satisfying a dynamic equation that is an extension of the incompressible
case (Canuto 1992). The suggested equation is

D _
D—e +Dye) = — C.i €K 'Ryiiy; — Coy @K' + Coym(l — y"YH; 'K 'H, A, + Cap~'eK~'pd — eil;;,  (282)
where K is the turbulent kinetic energy, equation (15a), and

6 0
— D) = [c pKe 'R, a—f] (28b)
J
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We also recall the identity

DA 0
P =7 P+
If we compare equation (28a) with equation (46) of Canuto (1992), we see that the first three terms were already present in the
incompressible case, the C_, term being the source of dissipation due to buoyancy. Because of m < 0 and A; < 0, the term is
positive in the region of unstable stratification. The last two terms in equation (28a) are due to compressibility.

2. In this model €, and ¢, are modeled independently. First, €, is taken to satisfy a differential equation similar to the one in
the incompressible case, to wit,

2

5o (AT . (280)

D 1 4
D€ts + Df(es) = — CEl GSK_IRij[ﬁi’j — § 5ijﬁk,k} - CEZ 632 K_1 + C€4m(1 - 'y_l)Hp_ 1€SK_1HiAi _5 GSﬁi,,- B (28d)
The form of the diffusion D /(¢,) is the same as equation (28b) with € — €. For ¢,, we write
2K
e, =¢FM), M? =m=2Kc;2 , (28¢)

where M is the Mach number and c; is the speed of sound (= yp/p)'/>. Sarkar et al. (1989) have suggested F(M) = a; M?, with
o, of order unity, while Zeman (1990) has suggested a slightly more complex expression:

F(M)=1—exp {— [(M —0.1)/06]*°}, M>01 F=0, M<O0.1. (28f)
The constants are C_, = 1.44,C,, = 1.83, C.; = 0.15,and C_, = 0.1 (Sarkar et al. 1989).

14.2. Pressure-Dilatation p'd, and Dilatational-Dissipation €,: Old and New Models
1. Sarkar et al. (1993) have suggested the closure

p'd = 3pM°[ay€, + o, Ry;il; ;] (292)
with a, 3 of order unity. Thus, using equation (28e),
p'd — pe; = — [3(50; — as)e, — 5%, R;; ﬁi,j]l_’Mz . (291)
2. Zeman (1991) has suggested a model valid for M < 1, whereby
— 1 D —
/d=__—271_/2 2

p Fpe) ™ 5 P (299

D 2 —1(,72 2
Z 2 _ 2 _ 29d
PR R AF (29d)

where the acoustic timescale 7, and the equilibrium pressure p, are given by
7, = tM[54(1 + $M?)]~ Y2, 1=2Ke !, (29¢)
p. =2pK¢'*(M) , (291)

1+2M?

P =0 o %)

The acoustic timescale 7, is defined as t, = L/c, where c is the propagation of speed of density or pressure fluctuations given
by (Chandrasekhar 1951)

¢ =212 (1 + 1 M2)12 . (30a)

Since the turbulent timescale t is defined as © = 2Ke; ' and €, ~ K*2L™ !, the first of equation (29¢) follows. The function ¢
was constructed using two ingredients: (1) the ratio of compressible to solenoidal kinetic energies K(c)/K(s) can be written as
the sum of two known behaviors (Sarkar et al. 1989, 1993; Zeman 1990, 1991): ~M for M < 1 and ~M* for M ~ O(1), so
that

K(c)
— = M?*(1 +2M?); 30b
Ko = M0+ 2M); (30)
and (2) the ratio between compressible potential and kinetic energies is in equilibrium
P 2
=) ~2K(c). 30
(pcs) © (300)

With K = K(c) + K(s), equation (29f) follows. We may also note that equation (29f) implies that

2
r:
=2

7= P M* (M) . (30d)
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The novel physical feature of the model is that in order to solve equation (29d) one needs to know the initial pressure p,. This
is distinct from the incompressible case in which the time development of the turbulence is governed only by the initial values
of the energy and dissipation rates. Direct numerical simulation, DNS (Lele 1994; Lee, Lele, & Moin 1992; Passot & Pouquet
1987; Huang, Coleman, & Bradshaw 1995; Muthsam et al. 1995; Cambon, Coleman, & Mansour 1992), has shown that in the
case of compressible turbulence, this is not the case and that for an initial Mach number, the evolution of a turbulent state
depends on the level of initial pressure (density) fluctuations as well as on the ratio of compressible to total kinetic energy.

3. The third model relies on the fact that using Poisson equation one can show that p'd and €, are related by (Taulbee &
VanOsdol 1991)

le — pEg = — l_’esM_z[Co M(Tak,k)z — Cy(ziiy ) + C,1T, (31a)
where
I'=p2p? (31b)

and C, = 1,C, = ,and C, = %. To complete the model, one needs an equation for I'. Previous authors (Rubesin 1989, 1990)
have suggested the closure T” = Au! f;, where B, is defined in equation (24c). Using a polytrope, equation (35a), we have

I =m?A*T 2R, B:B; . (32
From dimensional considerations, A4 must be of the form 4 = c,t,, where 7, is a timescale. We suggest two choices, 7, = 7

and 7, = 7,; see equation (29). A value c. = 1is also suggested.

14 3. New Model for p’* and €,

We begin by deriving a dynamlc equation for p'2. To that end, we use equation (6d) written for p’ via the second ofequation
(35b), multiply the result by p’, and average. We obtain

1Dp? — n 0
- — (D _ a2 ’ 4 33
> Dr =P S a\P o P ) (33a)
where
D
O =c;? Dr c2 —fy - (33b)
Next, we have
0 0 —— op' (33
= — pou — pu — c)
p ax l axi p pul pul axi
and
p'ou} = pp'ui + p'p'ui = pp'uj + nm*p(pT?) ™' p?u; T2 . (33d)
We approximate the last term as follows:
p 1p2uI/T//2 — puli/T/IZ — l—)\Ijl , (336)
where ¥; was defined in equation (26b), and its dynamical equation is given by equations (62a) and (62b). Thus,
pou! = p('u + nm*pT~2¥) . (33f)
The second term in equation (33c) is given by
op' op' op 1 _ o 8p
" — " 14 — H“ T T// " (33g)
pla pla +pla 2p11+m p la

where I1;;is defined in equation (12d) and it will be given in § 15. Finally, if we take p — p in the last term, we obtain
ép’

1 ~
pu; —— ox, =5 p(IL; + mT 1Y) , (33h)

where IT{; was defined in equation (26e). Finally, the equation for (p'*) is given by

1DLQ= '2(1)__ |:

2 Dt 0x;

The expressions for p'u! and p'd are given by equations (35¢) and (45c). Equations (33i) and (31a) can thus be combined to
yield the new equation for €,

~ 1 ~
p(P’ vy anﬁT_Z‘I’i) _ E p(Hii + mT_ll_I?,-)] . (331)
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14.4. Compressible Terms: u}, p'u, p'u!, T"
To compute these compressibility terms, we begin with the general thermodynamic relations for a polytrope:
dQ = cdT , T 'dT =(m—Dp 'dp, dS=c,n—7y)p tdp, (34a)
n=1+m'=(,—cc,—¢c)". (34b)
The polytropic index m is treated as a free parameter. We recall that
adiabatic: c=0,n=y,m=(y —1)~? isothermal: c= o0, n =1, m= oo . (34¢)

From equation (34a) we derive

Ié,=np7,=nmp_—7:”, (35a)
p p pT
which gives p’ = p' = pT” = 0 as required by equation (4c). We also have
p=ylcp, p=midp, p=nmmylacipT", (35b)
where o = T~ 1. Using the first of equation (5b), we derive the following relations:
w=—p tpul = —mlc,T) 'H; = —mly — e, *H;,  p'uj = nm(1 —y~"pH, . (35¢)

Equations (35¢) are consistent with equation (4c) multiplied by u; and then averaged. The tensor B;;, defined by equation (12c)
and which acts as a source of Reynolds stresses, equation (14a), can thus be constructed in terms of known variables. We have

Bj; =m(y — l)cs_z(‘sikHj + 05 H)p = m(l — y_l)pHp_l(éik H; + 03 H)A, , (36a)

which makes equation (14a) easier to compare with the incompressible case. Since in a region of unstable stratification H; > 0,
B;; must be positive, and since A, < 0, equation (23e), it follows that

m<0, n<l (36b)
which implies that the fluctuations cannot be isothermal and/or adiabatic. We may further note that all previous incompress-
ible treatments correspond to the casen = 0,m = — 1.
Next, we consider the terms T” that appears in the convective flux equation (24a). Since by definition
T = — ﬁflp/T// , (37&)

use of the second relation in equation (35a) gives
T = —m(pT) " pT"?*) = —2mT ¥ = — 2mc,(y — )c; 2¥, (37b)

where W is given by solving equation (26f). Since m < 0, it follows that T” > 0. Equation (37b) is the extension of the second
term on the right-hand side of equation (57) of Canuto (1992) to the compressible case.

14.5. Dilatation
From equation (35c), we obtain the dilatation

7 a =" __ a -2
d= i = —my—1) 5 (¢ *H), 679

which relates the divergence of the mass average turbulent velocity u; to the divergence of the ratio of the convective flux to
the square of the sound speed.

1 13

15. PRESSURE CORRELATIONS TERMS

15.1. Temperature-Pressure Correlation
The third-order moment

w=7%, (382)
' 0x;
which enters the equation for the convective flux, equation (24a), will be written as
op’
m =5 o7 & 38b
i=p <p 3 xi> (38b)
Substituting pT” from equation (35a), we obtain
- 0 —

pII} = (2nm)~1yTe ? — p'?, (38c)

0x;

where p'? is given by equation (33i).
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15.2. Pressure-Velocity Correlation Tensor I1;;
The tensor (eq. [12d])
II;; = u”p/ + u”p/, =A;+ A (39)

is one of the most difficult statistics to compute. In compressible turbulence, it has been general practice to adopt the same
expression as in the incompressible case, that is (Speziale & Sarkar 1991; Canuto 1992, 1993)

P =2¢c,t7 'y + (1 — Bs)p~ "By — $K(S;j — 50;jSu) — a1 [by Sjx + bjx S — 36,5 Spq byl — 02(by Vi + by Vi), (40a)
where B;; is defined by equation (12c). Furthermore,
b”:R”_ 55” s 2S”:ﬁl’1+ﬁ

i o

W, =iy — iy, (40b)

2

The constants c,, o, , and 5 can be found in the above references.
Since we have no way of assessing the reliability of equatlon (40a) as a representation of IT;; in the case of strong density
stratification, we work out a new expression that we derive using the basic equations obtained before Take the time derivative

D/Dt of equation (39) and consider
D D op’ Jd Dp
ZA={lZuw)ZEX n 2 ZE N 41
Dt <<Dt “’) axj> * <”’ ox, Dt> (412)

As for the first term, we make use of equation (10b) to eliminate Du}/Dt and obtain

D op' N 1 dp op'
<<Dt u,) 6xj> Hiok e <p 0x; axj> ’ (410)

where we have neglected the fourth-order term
" a " 6p,
<uk 0xy, " ox >

on the grounds that it represents the product of three functions uj, u;, and p’ that peak at very low wavenumbers, while the
integrand weighs more at large k’s because of the k2 factor, thus implying possibly a small overlap. Expanding the density as

p‘l—"1<1——+ > (41c)
p
and using the pressure scale height H, and A, defined in equation (23¢), we obtain
In the first term, we neglect p'/p versus unity and take
6i5jp =20,p0;p +2p 6”p ~20,p0;p (41¢)

since the term we neglect is the product of two functions, one of which (p’) peaks at low wavenumbers while the other
(0} p' ~ k*p’) peaks at large wavenumbers, thus implying a small overlap. Thus, equation (41b) becomes

D op 1 __[o&*»p* 1 _ 0 —
—u )| == )= —t A —=p Y ———-H,'A, —p?|. 42
<<Dt u,> 6xj> Yokl =5 P I:ﬁxi ox; n P ox; P “2)
Since p'? is solution of equation (33i), the right-hand side of equation (42) is considered known. Next, we consider the second
term in equation (41a),
0 Dp
r— ) 4
<”' ox; Dt> (432)
First, we employ the second of equation (35b) and subsequently equation (6d) to compute Dp’/Dt. We obtain
2 ” a D 14 N / i 2
" <u ax Dt> ¢ juip + PA;; — ’6xj ¢, (43b)
where
dp=ctd (43c)

(43d)

S

Il
/\
(@) \Q)
2=
\/

=

I
/\
<
=

)

S

=3
\/
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In deriving equation (43b) we have made use of an argument similar to the previous one and have neglected a term whose
components have a small overlap. 4;;is evaluated using the second of equation (35b) with the result

0
A= :l ‘ZI:A —upe?— oy cs{l . (44a)
J

ou! 0ty ou!
B. = ") — n 270\ ik n_ "t X 44b
i (P“ k <Puk axk> %, <P”k (3xk> (44b)

At this point, we make the reasonable approx1mat10n that the largest contribution to the last term is obtained by taking
p — p. The term that remains under the average can then be evaluated by averaging equation (10b), which gives the exact
result

As for B;, we first write it as

ou; D — — 0 — or;
” i — =g ” 2 ——\—1 ’2 ——l_lk. 44
<uk axk> D u — i u + (2npp) o, P +p o, (44c)
Substituting into equation (44b), we obtain
_| D g 0 —
B, = [E u! + di;  uy — (2npp) e p 2] . (444d)
Collecting the results, equation (43b) becomes
0 Dy — 0D n_|D— — 0 — | oc?
n_Z_ "ot (I)A _ 5l = o //_2———1_ /2 _S‘ 44
22 2 on, 22 oo L2 o
Using equations (42) and (44¢), equation (41a) then becomes
D N —— 00 n_[D — —| 0 1 ,_ |1 oa;
Dp Mo = @Ay — i A + uip o, —;P[Ft ui + Lkuk:| 8_xjc + 502/1 l[n—Hp Aiaj_a_xj] , (45a)
where
— .2 a 72
a;,=c; r’. (45b)
0x;

Once A;; is known, the pressure-velocity correlation tensor II;; is also known, equation (39), and so is the pressure-
dilation term since

7= ) — > (450)

>
kol
[\

where p/ 7 is given by equation (35c¢).
15.3. The Terms {u;(Dp'/Dt)) and {T"(Dp’/Dt))
These two terms appear in the dynamic equation for the convective fluxes, equation (24a), and in the temperature variance,

equation (26f). To compute the first term, we employ equation (35b) to write p’ in terms of p’, equation (6d) for Dp’/Dt as well
as the definition (eq. [33b]). We obtain

D
u D—I; 1 cX[du) p' — B], (46a)

where B, is defined in equation (43d) and is given by equation (44d). As for the second quantity, we use the same procedure to
obtain

, Dp’

Dt

To treat the last term in equation (46b), we first approximate it as

_ 0
_n cg[,-,m il pu;.f] . (46b)
0x;

0 0
T — "~ LT — " (460)
and then use the second expression for p’ of equation (35b). The resulting expression is the same as that in equation (33c).
Thus, finally,

Dp’ n - 1 (T L 1._ ~
7 =2 — _ 22507 + — uf 25T~2W) — = p(IL; + mT 1119 | . (46d
D ycs{p +— <p>[ p(p'u} + nm*p ) =5 P +m G ]} )
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16. NONLOCALITY. DIFFUSION, THIRD-ORDER MOMENTS

To account for nonlocality, we have to compute the three diffusion terms entering equations (14a), (14d), (24a), (23c), (26a),
and (26b), that is, the third-order moments,

Tijk = m > Tijk = PRy (47a)
h;=pulu;T",  h;=pH,; (47b)
Y = puf pui T"? > Y =p¥; 47c)
A=<p?, A=ps. @7d)

The last third-order moment will be shown to be implied by the equation for ;.

" //

16.1. The Tensor ;3 = pu; u] uy = pR;j

To derive the dynamic equation for this variable, we multiply equatlon (7a) by u;u, and equation (11a) by u,. Summing the
results and rearranging, we obtain

0 0
(pu u;uy) + (pu u;uwu,) = Fiuju, + Fiuu, + Frouu; (48a)

We have averaged equation (48a) and derived an equation for R;;. However, the final form is not very transparent. Thus, we
have decided to follow another route. We take the D/Dt of ;. Eliminating the Dp/Dt term via equation (6a), we obtain

D ~ " " " a " // /I Du”
Dt Tijfe = — Uy m Tijk — <u uj uk ox (ou,, > + p<[ Dt + perm. :|> (49a)

where perm. indicates that one must add two more terms with running indices jki and kij. We also recall that (4) = 4. In
each of the three terms in the square brackets, we substitute equation (10b). We obtain

Duj 1 0
<<u;’ uj Dt L perm. >> — (Tijm Uy, m + PETM) + — < ij 6 Tem + perm) Ay — Bij - (490b)

Here, perm. means the addition of two terms with the indices ijk permuted (the dummy index m is unchanged). The last two
terms in equation (49b) are given by

aull
Ay = <pu” T, p > + perm. (49¢)
// /I 1 " //
B = u; F, — P = puj u F, | + perm. (494d)
Let us compute the last term. We have
" " 1 // // " // 1 14 //
uiquk_ Fk—u Fk__pu Fk (493)
p” p
Next, we substitute the definition of F;, equations (7a) and (7b) and neglect the viscous term. We derive
N l/ 1 " // 1 I I/ "
Fk — pu; u Fk — Ty + gpA, — p'u; u;, (49f)
p p”
where
6p’>
M= uju; — ). (49g)
& < T ox,

Finally, we employ the second relation in equation (35a) to rewrite the last term in equation (49f) as
gpA p / " I/ _ mgT lhijAk R (49h)

where we have used the definition (47b). Substituting equation (49h) into equation (49f) and then into equation (49d), equation
(49a) becomes

D . 5
E Tijk + um,mti]k (pu” ”u;i,u;:l) = Tkm + perm) + mgT l[hUA + perm] Uk s

1 0
_(t]mukm+perm)+ (”0

(50a)
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where
Hijk = nijk + perm. (50b)
Using equations (47a), (47b), and the tensor

pu ui uy Uy, = PR, (50c)

as well as equation (6¢), (50a) becomes

p % Ry + 66 PRijim = — P(Rijm U + Perm.) + |: i o (PR, + perm:| + mgT ~'p(H; A, + perm.) — I . (50d)
Next, it has been known for many years that one cannot assume that the fourth-order moments are Gaussian distributed:
Rijim = Rij Ry, + Ry Ry, + Ry Ry + Ciip (50e)
with zero cumulant
Cijm =0, (50f)

since that leads to negative energies. The pragmatic solution adopted in all treatments is to make sure that there is no
accumulation of the third-order moments by assuming that the effect of nonzero cumulant C,,, is represented by a damping
timescale 7. Thus, equation (50d) becomes

D _ . 0 0 0
(Dt +71 1>Rijk = — (Rijm U, ,m + perm.) — (Rim % Rj. + R x Ry + Ry . Rij)
+ mgT~(H;; A, + perm.) — (p) T, . (50g)

Finally, we have to work out an expression for the pressure term IT,;. In all incompressible treatments, this term is not
actually computed; rather, it is assumed phenomenologically that it entails a relaxation process with a timescale 7, that is,

M~ — 7 'Ry - (50h)

There is little justification for such an assumption in the case of compressible turbulence not ultimately because it is not at all
obvious which timescale to use since we have

1,7, and 1, = (U, ;U; )" "%, (50i)

where the first two 7’s have already been defined.
We shall proceed in the following way. First, we use equation (35a) to write

a ' a - " n " a n " 6T”
Tijp = <u’i’ uj 6—>€k> =nmc,(1 —y 1)<u;’ uj — o pT”> =nmc,(1 —y 1)|:<ui u; T 0—>/c)k> + <pui uj 6—xk>:| . (51a)

In the first term we shall take p — p, and so

- e 6/_) "o aT”
T = nme,(1 — y 1)|: ! ey hi; + <pui uj 6—x’c>i| . (51b)
Since
6 " a " " 4 " 6T”
6_ h;; <T 6 pu; U > + <pu, uj 6xk> , (51¢)
we further have
op 0 0
— 1_ - -1 2 g . TII "ot 1
T = nmc,(1 —y )|: ox, hi; + o, h;; < o, pu; uf >:| (51d)
Finally, by approximating the last term, we have
op 0 - 0
= —_— - 1 0~ 1 _— . _— s — " _— .
T = nmc,(1 —y )|:p ox, h;; + o, h;—T o, 7:,]:| . (51e)
An alternative expression derivable from equation (51b) is
o, op oT”
Ty = nme,(1 —y 1)|: 16th Ty S :| (51f)

Expressions (51¢) and (51f) can be rewritten as

9 By &] (5lg)

51l 1— -1 2H.. — T//——l
P nl]k nmcp( Y )|:( ij ) 6xk axk axk
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0 oT”
P m =nme, (1 —y~ 1)|:‘”%H + R; o :| (51h)
k

Equation (50f) can be compared term by term with the analogous equation for the fully incompressible case equation (55a) of
(Canuto 1992).
16.2. The Tensor h;; = pulu; T" = pH;

To derive the dynamic equation for this tensor, we can follow two procedures. We can multiply equation (11a) by T and
equation (21d) by u; u;. Summing the two and rearranging, we obtain

0 0
% (pTu;u;) + (pTu i) = T(Fu; +u; F;) + u;ufA, B) . (52a)

Next, we average equation (52a). We have carrled out this process only to end up with an equation that is quite cumbersome
and, more to the point, rather difficult to interpret physically. We thus decided to use a different approach. We begin by
writing

D D D
Dr hy; = <pT” Di u§’u}’> + <ufu;’ D_ T”> =A;;+ Bj;. (53a)
From equation (10b) it follows that
D
D uuj = — [ oo uy + ;o] wy ] — [uf i uy + ufouf w] + (yuf + p;uf (53b)
where
— -1 N—1F o1 O
pn=p 'Fi—(p)'F;+(p) a_"-'ik- (53¢)
X
Thus, we obtain
~ ~ UM 6 // " ", "
Ay = — (U hy + 8 hy) — < T ug ox > +<pT"(y;uj + y;u7)) . (53d)
k

Next, we work out the last two terms in equation (53d). Using the definitions of y; and that of F;, equations (7b) and (7c) but
neglecting the viscous terms, we obtain

" - a a ", " 1 aﬁ 1 6p . .
<pT"(y;uf + y;u)) =c, 1<Hi 6_xk Ty + H; 6_xk ‘cik> <pT {<p> E — ; 6_xl}> +<i-j>. (53e)
In the curly brackets, the two largest terms give
p/ oy ap/
b =gA ——— —. 53f
{}g<p> ) o (53f)
Thus, writing p’ as from equation (35a), we obtain
1 op 10p
T"uj ——— T YA, A; 53
< {@ax p@xl}>+<l_)1> mg T~ (A + Asy) — TTY, (53)
where the pressure-temperature correlation tensor is defined as
" " 6p/ " " 6p/
H?jz<uiT 6_xj>+<ujT (3_xi>_n + 7, (53h)
and y; is defined in equation (47c). The tensor 4;; cannot be further reduced. Next, consider B;; and in particular
D D . ~ 0
T -1 = IT — -1 T /q) o ” 4
where we have used equations (35a) and then (6d). We recall that @ is defined in equation (33b). Thus,
0
B;j=h;® — m_1T<u;’ uj py pu;c’> . (54b)
X

In equation (53a) we add to both sides the divergence

—— (,W (54c)
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and consider the combination
_— 0 0
C;= (p T/ ujuy) —  pT"uy — ujuj ) —m”~ T uy u; — puy ), (55a)
0%y, 0%,
where the second term comes from Al j» €quation (5 3d) while the last term comes from B,;;, equation (54b). We have

0
Ci= < "u — (pT”u > 1T<uf uj 6_ puk> (55b)

Next, using equation (23g), we write the first term as
0

C_l l_] a (ka) (SSC)
k
In the second term in equation (55b), we substitute p = p + p’. Using equatlon (5b) to write {p'u; », we derive
a A = 4
uj wj — puy ) = p xRy — 1y =— (o) , (55d)
0y, a X
which finally gives

Cij=c, 1 5 (pH,) — m_1T|:l_’,k Ry — 1y 8 (puy, :| . (55e)

The dynamic equatlon (53a) for h;; then becomes

- - 0 _ 0 0
h +Df—h (ui’khjk+uj’khik)+c ”6 (ka)+C 1( ia__)qcrjk—i_Hj—Tik)

0x,
+mgT (A Y+ Ajy) — m_1T|:l_’,k Rij — 1y 5 (l_m;c, :| H?J > (56a)
where the diffusion term is defined by equation (54c) as
6 (a // "
D, = 6 (PT, uj ujug) - (56b)
Next, we approximate the fourth-order moment as before, namely
T”u” "u;é—>c [HiTjk + HjTik +Hk‘CU] + Cl]k 0 (57a)

where the cumulant C is nonzero. Equation (56a) then becomes

D _ N o
<Dt +7 1>h = hy;® — (i hy + 11, hy) — ¢, 'p[RyH; + Ry Hy  + H Ry ;]

+ mgT_l(Ai ‘pj + Ajlpi) - m_lflil_),k Rijk Tij 5 (/_W;é) + H” ox (ka):| (57b)
To simplify equation (57b) further, we use equations (47b) and (47c) and obtain

D D ~
<Dt+r_1>H H C_ZEC (ai,kij+1'~4j,kHik)+mgT_l(Ai‘Pj+Aj\Pi)_cp_l[RikHj,k+Riji,k+HkRij,k]

—p 1H0 —m 1Tp_1|:p,kRijk Tij 6’ p ;c,) + HU Ox (ka):I (58a)
X

Equatlon (58a) can now be compared directly with the 1ncompress1ble case, equation (55b) of Canuto (1992). As in the
previous case, we shall not use a phenomenological expression for IT}; but rather derive an expression within the formalism
itself. We begin by using equation (35a) to write

oy’ _ 0 _ op oT”
0 __ " " 1 " " " 1 4 "2 14 "
;= <u, T ™ j> =mm(l —y )cp<ul 1 ™ jpT > =nmnm(l —vy )cp| <ul 1 Fy j> + <ul pT F j> | R (58b)

which we approximate as
0 -1 -—1= " " 6T”
my=nm(l —y )| p~p Y+ (ui pT Ak (58¢)
J
The last term will be approximated as in equation (51f) so that
ngy=nm(l —y Ye,plp~'p ;¥ +c, 'H,T"] . (58d)
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An alternative procedure to compute the last term in equation (58b) is by way of taking p — p and considering that

ToT? F} oT?  p i
~ ou" = T//Z T//Z "~ pu’ F \P 25¥ —
l//’ i 0x; + 6xj TP 0x; i & P 0x; + 0x; +op ox; ' uf

so that once substltuted in equation (58b) gives

n = nm(l —y Ve, pLp 1P, ¥ + 3y, — Wil
Interchanging the indices i — j and summing the results, one obtains the desired expression for IT?
16.3. The Vector y; = pu T"? = p¥,

equation (53h).

ijo

847

(58¢)

In order to derive the dynamic equation for this third-order moment, we begin by using equation (35a) to write pT" in

terms of p’ so that

N ~ ,2 S~
U= pul T2 = (m™ ' T)? ”7 W = (m 1TPQ, .

Thus, we have

Using equation (6a) in the form

Dp ~ 6 "

D_t = — PUp — ox, (pui) ,
we obtain

DQ;

E U Q;=A;+ B
where

If we further introduce the variable

equation (59c) becomes

Using equations (6d) and (10b) we derive

= 20, Q; — i ;Q; — 2<p'p ™ i (pu)) ;> — <pp T ujul ;> + <p Ty
where y; is given by equatlon (53c). Equation (59g) then becomes
_D _ s ,
pEQi+Di=_ijui,j+<p %> + Ly,

where the diffusion term is

0
D- = /" -1 /2 " ,
=, {ujp™ p"ui)

’ 12 7\ 2
p P p
L, =— 2<— u;(pu?) > - < uju; > + <(—> u;(pu?) > +D;.
p J75J p J sJ p J75J

After some algebra, we obtain without approximations,

1 o _
— L ={(% //_ 1"
2 <p )>

and where L; is given by

(59a)

(59b)

(59¢)

(59d)

(59¢)

(591)

(592)

(60a)

(60b)

(60c)

(60d)

(60e)
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which we further rewrite as

= p[mT—l(p J/[))Hu__”_ (60f)
where we have approximated <{p'/pu; u";» w1th — u”d Furthermore, using the definition of y; and that of F;, equation (7b), we
obtain
7Py =pl Ti=p 2 <p®vy;+gAo—TI7. (60g)
The pressure-density covariance correlation
1\* op’
e — <_> < e i> (60h)
p 0x;
can be computed to be
0 1 ,0 op
ng=ny—1<a Laiialica %) (60)
The variable ¢ was defined in equation (47d) and its equation is given below. By adopting the same approximation (50e), we
write the diffusion term as
p/ 2
W p~ oy = 2pi ) + rl,<<;> > , (61)
where we recall that pii} = — p'uj. Equation (60b) then becomes
DQi AN ~ A — p,' a pl 2 - — // =
The corresponding incompressible result is equation (55¢) of Canuto (1992). In conclusion, since
T\%
Y, = (_> Q, (62b)
m

once Q; is known from equation (62a), the vector P, is also known.
16.4. The Scalar ), = {p’®) = p3c

To derive the dynamic equation for the variable o that enters in equation (62a), we employ equation (6d) to obtain after
some algebra

1 D -3 _ 3~ 12 a "
3D P = TP T — <p ox, (puj) ) - (63a)
In terms of ¢ we have (d = u; ;
D op
P B+ Dy= =3 50 o) = 3Gy — 2% (63b)
where
— a " 13
If we take
oy ~ P70 (63d)
and approximate the fourth-order in equation (63c) in the usual way,
<u// p/3> — 3p/2p/u// — 3pp/2 /" (633)
Equation (63b) becomes
D op or
F(t; = — 3<,Z>‘1 %)(Q 3Tu) + 3u 0 -+ 3Tdy — p~Xp?d)) —2p~3p*d), (63f)

where I' = {p’?>p 2 is obtained as the solution of equation (331).
17. CONCLUSIONS

The model presented here is an attempt to describe compressible, time-dependent, nonlocal turbulent convection in the
presence of large-scale flows and arbitrary stratification and radiative forcing. Before this work, compressible turbulence was
treated with numerical techniques such as DNS, direct numerical simulations (Passot & Pouquet 1987; Lee et al. 1992;
Cambon et al. 1992; Lele 1994; Cabot, Thompson, & Pollak 1995; Huang et al. 1995; Muthsam et al. 1995), and LES, large
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eddy simulations (Hurburt, Toomre, & Massaguer 1986; Stein & Nordlund 1989; Chan & Sofia 1989; Hossain & Mullan
1991; Cattaneo et al. 1991; Erlebacher, Hussaini, & Speziale 1992; Singh, Roxburgh, & Chan 1994) and with closure models.
As for the latter, an attempt was made to apply the DIA two-point closure model to compressible turbulence (Hartke,
Canuto, & Alonso 1988), while the one-point closure model was applied in (Rubesin 1989, 1990; Taulbee & VanOsdol 1991;
Speziale & Sarkar 1991; Sarkar 1992; Sarkar et al. 1993, 1989; Xiong 1989, 1997; Yoshizawa 1995; Rudiger et al. 1996). The
two-point closure approach gives rise to a rather complex set of equations, while the Reynolds stress models suffer from a
great many phenomenological inputs that are difficult to assess. To improve the situation, we have developed a self-consistent
formalism that does not make use of phenomenological relations. Only one assumption is made: the fluctuations p’, p’, and
pT" obey a polytropic relation, and that introduces a free parameter, the polytropic index m. The major emphasis of previous
work (Xiong 1997) was on the treatment of the radiative field, while several turbulence higher order statistics were treated
approximately. Here, the emphasis has been on the treatment of turbulence.

The author would like to thank B. Datta for carefully reading the manuscript.

APPENDIX

Al. ENTHALPY (CONVECTIVE) FLUX: H,=c,p~ ' pu! T

D a - - ~ m = - i
<D H;,+c, 0 )chpRijﬂj—ijui —c H”[p +< T)p ]—cp[gpAiT + I1¢]
P

’

Dp Dp

U Al (1a)
oT ¢ o o
& 0x; * Cp v g p(P) ox; > p plgp) ", (1b)
T = —2me,(y — 1)e *¥, 10
- 0 —
pILY = (2nm)~YyTe;? —p?, (1d)
0x;
1 Dp”? P . . )
2 ll;t e c |:5 PO+ T ) — 5 P + mT—lH?i)] ; (le)
D
(I)Ecs_zacsz_ﬁk,ks (lf)
D
u, D—I; E CZ((I)u// 7 B,) , (lg)
| D — 6 T
e —wly—DTH,, =l — Ve, T =l — (1)
ap oT" '
= 1—y Y p '=—H;+R;— .
=~ (a)
nly = mn(t — 3~ e, 55715, Y, + $¥,, — Wi, (2b)
A (3a)
— A, =OA..—u., A v _n v 0 1, 1, dg,
b VT T oy 0x; v <Dt u ulkuk) ox; * o+ 2P <nH,, i4 6xj) ' (3b)
o0
a=c;”—p*. 69
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A2. TEMPERATURE VARIANCE: § = 1pT"% = p¥

’

DY 1 -, Dp D ——
“ <_ + p‘lDf> =PHifi+ 5 I+ T Ly L _TF,

Dt Dt Dt
10
D.=—-—— pY, 4
S 2 axi Pri, ( a)
Dy’ 1 T ~ 1 ~

T 2F = =2 0T + — ()| 5= B + mmT ) — 5 p(IL + mT 0L [ (4)

Dt y 6 2

A3. REYNOLDS STRESSES: R =p- pu” u’

(D 2 2 _

P(E Ri; + D,~,~> =Zi;+ By —my + 0y 3 p'd — 3 pedy, (5a)
., 0 (. 2 —
D;j=p 6_xk PR + 3 0y DU — Oty — 0ych; | (5b)
— 2 = p(Rycdhj + Ry 1) 5 (5¢)
By =m(l —y YpH, "6 H; + 05 H)Ay (5d)
;=1 — 36, Hkk > (5e)
Py (5f)
A4. THIRD-ORDER MOMENTS
A4 1 lek — p pu// " //
D _ . 0 0 0
(D_t tr 1>Rijk = — (Rijm tiy, + perm.) — (Rim 7 i+ Rm 5~ Ris + Ry =~ Rij)

+ mgT_l(HijAk + perm.) — (p)_lnijk ) (62)
A42 H;=p" Loulw! T u; T"

D _ _, D - . o -
<17t + T 1>Hij = H,-jcs 2 E Csz - (ui’kij + uj’kHik) + mgT 1(A1\P] + A]lPl) - Cp 1I:RikHj,k + Riji,k + HkRij,k]

- p_ln?j - m_ITp_l[p,kRijk T 6 (l_’u;c,) + H;j —— Ox (ka):I . ()
Xk

A43. P, =p lpu T"? = (T/m)*Q,

DO. _ 5 - 2
e = — Qi+ gAio — I 2mT‘1<%>H,-j — Ry 6‘3 <” ) 25 i = (pu”) (8a)
0 1 oo op
60 __ . - 7 2 -—1
I’ = ny~ <0' o, & ez + cs ox, +c;op 6xi> . (8b)
Ad4. p? =pe
D 0\ ~ — — oI
Do 35t L)@, — 3T + 3 O+ 300y — 5 ) — 25 (9a)
Dt 0x; X;
F=p"2p%=n"2p 2p>. (9b)

A5. MEAN TEMPERATURE FIELD: T

DT 0 _ Dﬁ — _
- - _ _Z F? Fy:_ / " "y /d De . 1
P Dy 6xi( i+ Fi—pu) + pi—pd+ pe (10a)
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A6. LARGE-SCALE VELOCITY FIELD: i

b a
Dt 0x;

(9;; + PR;) — pg; - (10b)

A7. MEAN DENSITY: p

D

~Ptp

i,=0. (10c)
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